DESIGN TECHNOLOGY HIGHER LEVEL PAPER 3 Thursday 5 May 2005 (morning) 1 hour 15 minutes 2205-6203 | Candidate session number | | | | | | | | |--------------------------|--|--|--|--|--|--|--| | C | | | | | | | | #### INSTRUCTIONS TO CANDIDATES - Write your session number in the boxes above. - Do not open this examination paper until instructed to do so. - Answer all of the questions from two of the Options in the spaces provided. You may continue your answers on answer sheets. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided. - At the end of the examination, indicate the letters of the Options answered in the candidate box on your cover sheet and indicate the number of answer sheets used in the appropriate box on your cover sheet. ## Option D — Food technology **D1.** Fruit and vegetables are an important part of a balanced diet. The World Health Organization recommends that adults eat at least 400 g of fruit and vegetables a day. "Countries such as Australia, Canada, New Zealand, United Kingdom, United States, and others have adopted a "5-a-day" concept which recommends at least five servings of fruit and vegetables per day" (Yeung and Laquatra, 2003: 199). To facilitate consumers some food companies (*e.g.* Heinz) use pictograms to represent the fruit and vegetable content of their products. **Table D1** and **Figure D1** show information from the label of a can of tomato soup. Table D1 | Typical values | Amount per serving (200 g) | |--------------------------|----------------------------| | Energy | 536 kJ | | Protein | 1.7 g | | Carbohydrate | 14.2 g | | Fat (of which saturates) | 7.2 g (0.5 g) | | Fibre | 0.8 g | | Sodium | 0.8 | Figure D1 [Source: www.heinz.co.uk and Yeung DL and Laquatra I (Eds) (2003). Heinz Handbook of Nutrition (9th Edition). Heinz Corporate Research Centre: Heinz] | (a) | Describe what is meant by a balanced diet. | [2] | |-----|---|-----| | | | | | | | | | | | | | (b) | Outline one health consideration that has implications for food choice. | [2] | | | | | | | | | | | | | | (c) | Discuss the accessibility of the information in Table D1 and Figure D1 for consumers. | [3] | | | | | | | | | | | | | | | | | (Option D continued) | D4. | Explain three reasons why consumption of the tomato soup is unlikely to result in food poisoning. | [9] | |-----|--|-----| ### Option E — Computer-aided design, manufacture and production E1. The Toyota Production System (TPS) is a Just-in-Time system developed in the 1950s to control the flow of materials through a production facility. TPS made a major contribution to the global competitiveness of Toyota and has been adopted by many manufacturers in many industries to improve their manufacturing operations. TPS developed over a period over 50 years, but interestingly has never been written down. An article by Steven Spear and H Kent Bowen in 1999 (*Decoding the DNA of the Toyota Production System*. Harvard Business Review, September-October, 96-106) identified four key rules implicit to TPS. Rule #1: All work shall be highly specified as to content, sequence, timing and outcome. This rule is about how workers do their work, for example: when a car seat is installed the bolts are always tightened in the same order, the time to turn each bolt is specified, and so is the torque to which the bolt should be tightened. Rule #2: All worker interactions relating to the movement of parts must be direct and there must be an unambiguous yes-or-no to requests and responses. When a worker needs more parts the request is made with kanbans – laminated cards specifying the part, the number of parts in a container, where they come from and who will install them. Rule #3: Every single product and service travels a single, simple and direct path. This rule determines how production lines are constructed. Rule #4: Any improvement must be made in accordance with the scientific method, under the guidance of a teacher, at the lowest possible level in the organization. This rule is about how workers learn to improve the production process and makes people responsible for improving their work. | (a) | Outline one impact of Rule #4 on the workforce. | [2] | |-----|---|-----| | | | | | | | | | | | | | (b) | Explain how Rule #2 helps to reduce waste and conserve resources. | [3] | | | | | | | | | | | | | | | | | | (c) | Outline one way in which Rule #1 contributes to the quality of the finished car. | [2] | | | | | | | | | | | | | (Option E continued) | E3. | Explain three reasons why global manufacturers from the West have found it difficult to adapt to lean production. | [9] | |-----|--|-----| # Option F — Invention, innovation and design **F1. Table F1** shows a range of specific features available on mobile phones that come in addition to common features such as an address book, calendar, alarm clock and games. Mobile phones are continuously being redesigned to become smaller and offer more, or improved, features. | E-mail | Provides e-mail access via the phone. | |---------------------------------|--| | Tri-band | Tri-band phones are able to work on all three GSM | | | frequencies, i.e. GSM 900; GSM 1800 (which is widely | | | used in Europe) and GSM 1900 (which is used in USA | | | and Canada). | | GRPS | GPRS allows the user to connect to the Internet and only | | (General Packet Radio Services) | pay for information sent or received. | | Bluetooth® | Bluetooth® technology is the new standard for Wireless | | | connectivity. It gives a wire-free connection between a | | | phone and a headset or other compatible device, e.g. a | | | laptop, up to a range of 10 m. | | Photo Messaging | Allows the phone user to send and receive photos. | | | (a) | Outline one reason why mobile phones are unlikely to be developed by a lone inventor. | [2] | |-----|-----|--|-----| (b) | Compare the lone inventor with the product champion. | [2] | F2. | | ine one lifestyle factor that has promoted the diffusion of the mobile phone into the cetplace. | [2] | (Option F continued) | F5. | Discuss three different strategies for the further development (innovation) of mobile phones in the global market place. | [9] | |-----|---|-----| ## Option G — Health by design **G1.** In 1981 the Food and Drug Administration (FDA) in the United States of America (USA) approved extended wear lenses to be worn for 30 days without removal. This approval was withdrawn when extended wear lenses were shown to cause oxygen deprivation to the cornea of the eye and a range of eye problems including microcysts. Oxygen permeability is expressed in units of Dk/T where a high value denotes high oxygen permeability. A new generation of contact lenses with high oxygen permeability (high Dk) (see **Figure G1**) have now been developed. **Figure G2** shows the results of a user trial with 18 subjects comparing the frequency of eyes with epithelial microcysts for high Dk (Dk/T=110) and low Dk (Dk/T=24.3) silicone hydrogel lenses. Fonn *et al.**, who are optometrists at the University of Waterloo, USA, conducted the trial. Figure G1: A silicon hydrogel contact lens Figure G2: Comparison of the frequency of eyes with microcysts when using high Dk/T and low Dk/T contact lenses. Fonn, D, MacDonald, K E, Ritcher, D and Pritchard N (2002). *The ocular response to extended wear of a high Dk silicone hydrogel contact lens.* Clinical and Experimental Optometry, 85 (3), 176-182. | (Ouestion | G1 | continued) | |-----------|-----|----------------| | Question | 0 1 | CONTRACTOR CON | | | (a) | Outline one lifestyle factor that leads to the popularity of extended wear lenses. | [2] | |------------|------|--|-------------| | | | | | | | | | | | | | | | | | (b) | Compare the frequency of microcysts for the two types of lens (high Dk or low Dk). | [2] | (c) | Outline one reason why regulatory bodies, like the FDA, would not approve silicone hydrogel in isolation but would approve it for a specific purpose. | [2] | Ca | Outl | ing and design contact in which user control design is particularly applicable | <i>[</i> 27 | | G2. | Outi | ine one design context in which user-centred design is particularly applicable. | [2] | G3. | Expl | ain the benefit of being able to reuse hearing aid shells. | [3] | (Option G continued) | G4. | Explain three benefits of an organization investing in preventing repetitive stress injury (RSI). | [9] | |-----|--|-----| ## **Option H** —**Electronic products** **H1.** Many cars now have cruise control systems, for use on long sections of straight road, so the driver does not have to keep pressing the throttle (accelerator pedal) to keep the car moving at a selected speed. The cruise control system uses sensors (see **Figure H1**) and controls the speed of the car by adjusting the throttle pedal. A cruise control system has a range of safety features, *e.g.* the system cuts out when the driver presses the brake or the clutch pedals. Figure H1: Incomplete processing block diagram for the cruise control **Table H1: Truth Table** | Brake | Clutch | Cruise
control
system | |-------|--------|-----------------------------| | 0 | 0 | 1 | | 0 | 1 | 0 | | 1 | 0 | 0 | | 1 | 1 | 0 | | \ / | ones shown in Figure H1. | [2] | |-----|--------------------------|-----| | | | | (b) Identify the gate missing in the logic circuit below required to achieve the truth table shown in Table H1 so the cruise control cuts out if the clutch or brake pedals are pressed. [2] (Question H1 continued) | | (c) | Describe a role for a comparator in the cruise control system. | [2] | |-----|-------|---|-----| H2. | Expl | ain why negative, not positive, feedback is used in the cruise control system. | [3] | Н3. | Desc | cribe why a microprocessor would be used in the implementation of the cruise control | | | | syste | em. | [2] | (Option H continued) | H4. | Discuss three different functions that could be programmed onto a multifunction smart card to benefit car users. | [9] | |-----|---|-----| |